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In a curved channel streamwise vortices, often called Dean vortices, may develop 
above a critical Reynolds number owing to centrifugal effects. Similar vortices can 
occur in a rotating plane channel due to Coriolis effects if the axis of rotation is 
normal to the mean flow velocity and parallel to the walls. In this paper the flow in 
a curved rotating channel is considered. It is shown from linear stability theory that 
there is a region for which centrifugal effects and Coriolis effects almost cancel each 
other, which increases the critical Reynolds number substantially. The flow 
visualization experiments carried out show that a complete cancellation of Dean 
vortices can be obtained for low Reynolds number. The rotation rate for which this 
occurs is in close agreement with predictions from linear stability theory. For curved 
channel flow a secondary instability of travelling wave type is found at  a Reynolds 
number about three times higher than the critical one for the primary instability. It 
is shown that rotation can completely cancel the secondary instability. 

1. Introduction 
The mechanisms behind hydrodynamic instability differ between various flows. 

For instance, in a laminar fluid flow along a flat plate or in a plane channel, so-called 
Tollmien-Schlichting waves may be amplified above a certain critical Reynolds 
number. This type of instability mechanism is often used to predict transition on 
airfoils through engineering approximations such as the en method. However, in a 
number of other flow situations a completely different instability may arisc in the 
form of stationary roll cells. This mechanism may be of importance in flows with 
density variations, or in flows with streamline curvature or system rotation, all of 
which have important technical applications. The latter two effects may influence 
the boundary-layer flow on, for instance, rotating turbine blades, which had already 
been recognized as a problem of significance by Prandtl in 1944 (see Oswatitsch & 
Wieghardt 1987, p. 17). 

For a fluid layer between two plates, heated from below, an instability may 
develop which is caused by the unstable density stratification. The parameter 
determining whether or not the instability will develop is the Rayleigh number. 
Centrifugal instability, i.e. an imbalance between the centrifugal force acting on fluid 
elements and the pressure, may arise in several flow fields as for example in 
cylindrical Couette flow, flow along a concave wall or flow in a curved channel. For 
instance, curved channel flow is governed by the so-called Dean number defined as 
Re yt, where Re (the Reynolds number) = U,, d / v  and y = d / R  (d is the channel width, 
R its radius of curvature at the channel centreline and d < R, and U, is the bulk flow 
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velocity). The critical Dean number is given in Drazin & Reid (1981) as 35.92 
(calculated by Gibson & Cook 1974). This flow has recently been studied both using 
a numerical simulation by FinIay, Keller & Ferziger (1988) and exporimentally by 
Ligrani & Niver (1988). 

A slightly more complicated problem, which has been studied to some extent, is 
the so-called Taylor-Dean problem, where the flow is driven by an azimuthal 
pressure gradient between two concentric cylinders at  the same time as the inner 
cylinder is rotating. Some experiments on this flow were carried out by Brewster, 
Grosberg & Nissan (1959) and the linear stability problem was investigated by 
Hughes & Reid (1964). In this case it is possible to modify the basic velocity profile 
as compared to either Taylor-Couette flow or Dean flow and for certain parameter 
values the linear stability problem becomes quite different from what is usually 
encountered. In that case the neutral stability curve for stationary streamwise 
vortices consists of two loops, and the critical Taylor number is determined by one 
of these loops, depending on a characteristic parameter. An interesting point is that 
at the parameter value for which the critical Taylor number is the same for the two 
loops, the corresponding wavenumbers differ by a factor of about 1.5. Hence, by 
changing the characteristic parameter value slightly, the most unstable wavenumber 
for stationary vortices changes by a factor of two. However, Raney & Chang (1971) 
showed that the two loops are interconnected by an oscillatory mode, i.e. the flow 
undergoes a Hopf bifurcation and that for certain parameter values this mode 
determines the critical Taylor number. 

For the above cases the instability is set up by an imbalance between a body force, 
due to buoyancy or centrifugal effects, and the pressure. Also Coriolis forces may 
affect the flow in a similar way. Hart (1971), Lezius & Johnston (1976) and most 
recently Alfredsson & Persson (1989) studied plane channel flow subjected to system 
rotation. In the latter study flow visualization of the roll cells were made at low Re. 
For rotating channel flow two parameters are needed to characterize the stability of 
the flow, namely the Reynolds number and the rotation number (Ro = Bd/U, ,  where 
$2 is the system angular velocity). The instability mechanism may qualitatively be 
understood as follows. The Coriolis acceleration of a fluid particle in a rotating 
system is 

This acceleration gives rise to a force in the opposite direction, which in a rotating 
channel is normal to the walls as the basic flow is unidirectional and parallel to the 
walls. The forcc is directed towards the leading side of the channel. In this case the 
basic flow has the standard parabolic profile, giving the largest force in the centre of 
the channel, thereby giving an unstable ‘stratification’ of the Coriolis force on the 
leading side and a stable one on the trailing side. However, for large rotation rates 
the flow becomes stabilized by the rotation. A simplified analysis of the regions of 
stabilization and destabilization is given by Tritton & Davies (1985) through a 
‘displaced particle ’ argument. The linear stability theory gives the lowest critical Re 
to be about 89, which occurs at an Ro of 0.5. This is almost two orders of magnitude 
smaller than the Re ( = 7696) for which TollmienSchlichting waves become unstable. 

In  the present study the combined effect of centrifugal and Coriolis forces on the 
flow is studied, in terms of the flow in a curved channel subjected to rotation around 
an axis parallel to the walls and normal to the flow. Depending on the direction of 
rotation the Coriolis effect either counteracts or enhances the centrifugal instability. 
For certain values of the rotation number the flow becomes stabilized by the 

Qcor = 2 8  x u. 
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FIGURE 1. Definition sketch of curved rotating channel flow. 

rotation. In some respects this case resembles the Taylor-Dean problem, e.g. the 
governing equations for the linear stability problem are similar. In $ 2  the expressions 
up to the first order in y for temporally and spatially growing disturbances are given. 
Section 3 gives the results of the linear stability analysis of the flow, both in the form 
of curves of constant growth rate and the eigenfunctions of the disturbances. It is 
found that when the centrifugal and Coriolis effects counteract each other the 
stability of the flow can be substantially increased. Section 4 describes the flow 
apparatus and 55 the experimental findings. The experiments confirm the results 
from the linear Stability analysis that rotation can substantially increase the critical 
Re for curved channel flow. 

2. Theory 
The definition of the velocity field and the corresponding cylindrical coordinate 

system for rotating curved channel flow are given in figure 1. The velocity vector u 
can be written 

u = u,e,+u,e,+u,e, 

and the equations of motion are 

18 
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where 

and 

~a a a u a  a 
- = -+u * v = -+uU,-+++uz- 
Dt at at ar r@ 82 

The boundary conditions are 

u,(r) = uP(r) = u,(r) = 0 a t  r = R f 9 ,  

which together with (4) gives 

8% - ( r )  = 0 a t  r = R+%. 
ar 

For the mean flow it is assumed that u, = u, = 0 and that up = U(r), which for ( 1 )  
gives 

i.e. the radial pressure gradient is set up by the centrifugal force and the Coriolis 
force. The mean velocity profile can be given exactly (see e.g. Finlay et al. 1988); 
however, for small y it is more illustrative to give it as a perturbation series in y .  
If r = R( 1 + y k ) ,  where 7 is a dimensionless coordinate with 7 = - 1 a t  the inner wall 
and 9 = 1 at the outer wall, the velocity distribution is 

u = $( 1-72) (1 -+yy) + O(y2). 

The mean velocity field is hence a slightly modified parabolic profile and to the first- 
order the correction term is antisymmetric with respect to the channel centreline. 
The maximum velocity is now found a t  7 M -b, i.e. i t  is slightly shifted towards the 
inner wall. 

2.1. Neutrally stable disturbances 
The experiments indicate an instability in the form of streamwise vortices and the 
neutrally stable linear disturbances are assumed to have the form 

u: = R(r )  eiflzld, u' = Q,(r) eWd, P 

u: = Z(r )  eiflzld, p ' lp  = P(r)  eiflzld, 

where p is the non-dimensional spanwise wavenumber. By assuming that the ratio 
of channel width to radius of curvature is small, i.e. y << 1, we can expand (1)-(4) and 
neglect terms of order y2 and higher. This gives the following coupled equations 
describing the disturbances : 

(6) 

(7) 

(D2 -P2)'R + 2yD(D2 - p 2 ) R -  2,PRe(y% +Ro) Q, = O(y2) ,  

(D' -P') @ + yD@ -Re(%' + 7% + 2Ro) R = O(y2) ,  

where D = d/dq and % is the non-dimensional undisturbed mean velocity % = U/U,. 
Equation (7 )  is a direct consequence of (2), whereas (6) is obtained by eliminating the 
pressure between (1)  and (3) and using (4) to eliminate u,. For Ro = 0, i.e. no rotation, 
these equations are similar to those given in Drazin & Reid (1981, p. 110) and the 
common terms are underlined; however, some more terms of order y are kept in 
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(6) and (7) in addition to the rotation terms. Note that the rotation number involves 
a sign depending on the sense of rotation. The boundary conditions are 

R(7)  = DR(7) = @(7) = 0 at  7 = - 1 , l .  (8) 
Equations (6) and (7 )  with the boundary conditions (8) constitute an eigenvalue 

problem for /3 with y ,  Re and Ro as parameters. In the lowcst-order approximation 
for curved channel flow y and Re combine into one non-dimensional number, namely 
the Dean number (De =Bey:). However, if all terms of order y are kept (in the 
disturbance equations and in the mean velocity profile) the stability is no longer only 
dependent on the Dean number, but is a slowly varying function of y .  

2.2 .  Spatially and temporally developing disturbances 
Usually, temporal growth rates are considered when studying growing disturbances. 
However, the experimental observations show that there exist stationary roll cells in 
the flow which instead could be considered as a spatially growing disturbance. To 
take both temporally and spatially growing disturbances into account the 
disturbance can be taken to be of the type 

exp (iPzld + stUb/d + mg?/y), 

where s and m are real non-dimensional growth rates, i.e. the disturbances can grow 
exponentially in time and/or in the downstream direction (note that q / y  is equal to 
the streamwise length along the channel centreline). This leads to the following 
system of equations with the same boundary conditions as for the neutral stable 
case : 

(D2 -/32)2R - 2P2Re(%y +Ro) @+ 2yD(D2 -P2)R 

= sRe(D2 -p” + yD)R + m{Re [9(D2 -p”) -9”- 2RoDIR - 2y/P@} + O(m2, ms, r2), 
(D2 - p”) @-Re (9’+ y 9  + 2Ro) R + yD@ 

I 1 
= sRe@+m Re42@+-[D3+2yD2-P2D-3y/32]R +O(m2,s2 ,ms ,y2) .  i P2 

2.3. Hopf bifurcation 
For certain parameter combinations it is possible to obtain a time-dependent 
solution of the form 

exp [i (pz/dkwtU,/d)  +s tU , , ld+q /y] ,  

i.e. a travelling wave in the positive or negative z-direction. In this case the 
corresponding eigenfunctions are complex. This is often referred to as a Hopf 
bifurcation and occurs when the Coriolis mode and the centrifugal mode interact 
strongly. Similar behaviour has been shown to exist for Taylor-Dean flow by Raney 
& Chang (1971), and also two-layer Rayleigh-Bdnard convection where viscous and 
temperature modes may interact and give rise to disturbances of travelling wave 
type (Rasena, Busse & Rehberg 1989). Another example is the flow of a three-layer 
inviacid, stably stratified fluid with different but constant velocities within the three 
layers, for which an instability can occur owing to wave interaction between the two 
interfaces (Craik 1985). 

18-2 
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3. Numerical results 
The eigenvalue problem derived in $2 was solved with a shooting method using a 

fourth-order Runge-Kutta method. The calculations were made with double 
precision and with orthogonalization of the solution vectors to decrease the 
numerical errors. 

3.1. Neutral disturbances 
3.1.1. Cu.rvcd chanmel $ow 

Figure 2 ( a )  shows the neutral curves for the four lowest modes, numbered I, 11, I11 
and IV, for the non-rotating case a t  y = 0.025. The critical wavenumber for the 
different modes increases approximately as the mode number times the lowest 
critical wavenumber. Equations (6) and (7)  contain terms of order y ,  usually not 
taken into account, and for y = 0.025 the critical Dean number is 36.27 and Pcrit = 
3.96, compared to the values given by Drazin & Reid (1981) of 35.92 and 3.95, 
respectively. Decreasing y gives values that decrease linearly towards 35.92. 

3.1.2. Curved channel Jlow with rotation 
I n  figure 2 ( b l )  neutral stability curves are shown for the curved channel a t  various 

negative rotation numbers for y = 0.025. There is a complex interaction between 
various modes as the rotation number is changed, which is quite different from what 
is found in the canonical cases such as curved channel or Taylor-Couette flow but is 
probably similar to what happens in Taylor-Dean flow. The interaction takes the 
form of several cut-and-connect processes between the neutral curves of various 
modes. In  figure 2 one should bear in mind that a neutral curve does not necessarily 
contain the same mode along its full length, but can consist of a t  least two different 
modes. 

In  the interval of Ro between 0 and -0.02 the first cut-and-connect takes place 
between mode I1 and mode 111 as can be seen in figure 2(b) (Ro = -0.02), where the 
two resulting curves are called loops in the following. Mode I still determines the 
critical Re; however, the critical Re has now increased by about 70% as compared 
to Ro = 0. For Ro = -0.0215 the lower loop has disappeared (figure 2c), whereas the 
upper loop has grown and the disturbance associated with that loop has become less 
stable. Decreasing Ro to  -0.024 leads to further growth of the upper loop, but also 
leads to a cut-and-connect process between mode I and this loop. In figure 2 ( e )  where 
Ro = -0.025 the cut-and-connect process is completed. At this Ro a cut-and-connect 
has also taken place between higher modes. 

Figure 3 (a ,  b)  shows a blow-up of the cut-and-connect process for Ro = -0.024 and 
-0.025. The transfer of modes between one loop to another will be further discussed 
later in this section. However, it is for the cut-and-connect processes that the Hopf- 
bifurcation type of disturbance occurs. At Ro = -0.025 the Hopf bifurcation curve 
is indicated with symbols between the two loops. 

Up to Ro = -0.024 the critical Reynolds number increases and is determined by 
mode I. At Ro = -0.025 the newly created lower loop determines the critical Re, 
which at this Ro is 535 with a critical p of 3.8. I n  figure 2 ( f )  (Ro = -0.028) the locus 
for the most unstable Hopf-bifurcation mode is also plotted. Neutral disturbances 
associated with the upper loop are, at Ro = -0.028, still much more stable than those 
associated with the lower loop. However, at Ro slightly larger than -0.0284 the 
upper and lower loops have the same critical Re which is 1245, although a t  this Ro 



Curvature- and rotation-induced instabilities in channel $ow 545 

19.0 - 

p 18.9 - 

18.8 

(4 

7 

15.5 -! 
2050 2100 2 

Re 

FIGURE 3. Blow-up of cut-and-connect process. (a)  Ro = -0.024, (6) -0.025. Locus for the 
Hopf bifurcation is shown by the symbol in (6). 

the critical Re is given by the Hopf-bifurcation branch as shown in figure 2(g). 
Increasing the rotation rate further gives a smaller critical Re, as the upper loop 
moves towards lower Re, and the flow hence becomes less stable (figure 2 h-2) and the 
critical Re is no longer determined by the Hopf-bifurcation. However, as Ro is further 
lowered this loop starts to deform drastically and unfold over a short range of Ro 
(figure Zh-j), and at  Ro = -0.035 (figure 2j) it  has a shape similar to that of plane 
rotating channel flow. The development of the neutral curves is quite complicated 
and the reader is referred to the figures to see the process. For decreasing Ro the flow 
becomes more and more rotation dominated and for Ro = -0.5 the critical Re is 89.7, 
which should be compared with that from a plane channel of 88.6, obtained by e.g. 
Alfredsson & Persson (1989). Also the higher modes take part in a similar unfolding 
process and at large values of Ro the neutral curves for the higher modes are similar 
to those of non-rotating curved channel flow (cf. figure 2a) .  

For positive Ro nothing spectacular happecs but there is a smooth transformation 
from the curvature-dominated to the rotation-dominated flow. The critical Reynolds 
number (figure 4a) and the corresponding wavenumbers (figure 4 b )  have been 
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FIGURE 4. Critical Reynolds number (a) and the corresponding wavenumber ( b )  a t  various 
rotation numbers for the two loops corresponding to the stationary disturbances. 

obtained from the neutral stability diagrams. For high absolute values of Ro the flow 
becomes stable, as also found by Alfredsson & Persson (1989) for rotating plane 
channel flow. The high peak around Ro = -0.028 corresponds to the near cancellation 
of the Coriolis and centrifugal effects as is evident from the neutral stability curves 
in figure 2. 

Figure 5 shows a blow-up of the peak region in figure 4. Also included are the 
critical values for the Hopf bifurcation. The solid line indicates the critical Re in 
figure 5 ( a ) ,  and in figure 5 ( b )  it shows the corresponding p. It is interesting to note 
that close to Ro = -0.028 the wavenumber of the lower loop decreases drastically, 
and a t  this point the solution for the most unstable mode first ' bifurcates ' to the 
time-dependent solution which has a larger spanwise wavenumber. If Ro is decreased 
further the most unstable solution again bifurcates, this time to the upper loop, 
giving an even higher wavenumber. Decreasing Ro further, the most unstable 
wavenumber decreases rapidly and for large negative Ro it approaches the value 
obtained for a plane rotating channel flow a t  the same Ro. 

The eigenfunctions of the radial velocity disturbance for the most unstable 
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FIGURE 5. The critical Reynolds number (a)  and corresponding wavenumber ( b )  in the region 
where the most unstable mode type change. 

stationary mode and the corresponding stream function in the (7, 2)-plane are shown 
in figure 6, The maximum values of both the eigenfunctions and the stream functions 
are normalized to one. Note that the left-hand side of the figures corresponds to the 
concave channel wall and that they are drawn so that the actual geometry of the 
vortices are shown. The results shown in figure 6 ( a )  for Ro = 0 are in excellent 
agreement with the calculations of Reid (1958). In this case the vortex is located a t  
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FIGURE 6 ( a d ) .  For caption see facing page 

the outer side, i.e. the concave side, of the channel where the curvature effects make 
the flow unstable. For Ro = -0.028 the eigenfunction is similar; however, the 
maximum has moved towards the centre of the channel. For Ro = - 0.0284, there are 
two equally unstable stationary disturbances corresponding to the two loops. For the 
lower loop the stream function seems to become somewhat distorted. At this stage 
a secondary vortex appears at  the outer side of the channel. For the upper loop 
(figure 6 d )  the strongest vortex appears at  the inner channel wall, although two 
secondary vortices do also appear. As the rotation effects start to dominate, the 
secondary vortices become lcss intense and at  Ro = -0.033 no secondary vortices 
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FIGURE 6. Eigenfunctions of the radial velocity disturbance and the corresponding stream function 
in the (z,~,z)-plane for the most unstable mode at various rotation numbers. (a) Ro = 0, (b )  -0.028, 
(c) -0.0284 (lower loop), (d) -0.0284 (upper loop), (e) -0.031, (f) -0.032, (8) -0.033, (h) -0.04. 

appear in the flow. At Ro = -0.04 the flow structure is qualitatively very close to  
that with only curvature effects, but with the vortex located a t  the opposite side. 

The cut-and-connect process between different neutral curves raises several 
interesting questions, one being what modes the new loops consist of. This may be 
found by investigating the eigenfunctions along the neutral curves. I n  the following 
a mode which has the maximum of the eigenfunction close to  the inner wall is 
dcnoted Coriolis dominated, whereas the opposite is true for a centrifugally 
dominated mode. In  some cases neither picture holds, the eigenfunction is then 
largest at the centre part of the channel or has two maxima, one close to each wall. 
For R o  up to -0.02 the most unstable mode shown in figure 2 ( a ,  b )  is centrifugally 
dominated. After the cut-and-connect process between R o  = - 0.024 and - 0.025 the 
mode determining the critical R e  a t  the lower loop is centrifugally dominated 
whereas the part of that loop which originates from the cut-and-connect process is 
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FIGURE 7 .  Eigenfunctions a t  various positions along the upper and lower loops a t  Ro = -0.025. 
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FIGURE 8. Eigenfunctions and variation of w along the Hopf-bifurcating branch at Ro = -0.0284. 
Eigenfunctions of the upper and lower loops are also shown. For the Hopf-bifurcating branch both 
real and imaginary parts are shown; the imaginary part is the one with the smallest maximum 
amplitude. 
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FIGURE 9. Curves of constant growth rate a t  Ro = 0: (a)  temporal growth; ( b )  spatial growth. 
x , data from Finlay et al. (1988). 

Coriolis dominated. For the upper loop these modes have switched as can be seen in 
figure 7. Also, before the cut-and-connect process the modes change along the neutral 
curves and change identity between the two curves where they come close together. 

At Ro = -0.0284 (figure 2g) the lower loop still contains centrifugally dominated 
disturbances ; however, this loop moves towards high Re and disappears when Ro is 
decreased further. From this Ro and up to large negative Ro the most unstable mode 
is Coriolis dominated; however, higher modes seem still to  be influenced by 
centrifugal effects. 

Figure 8 shows the real and imaginary parts of the eigenfunctions for the Hopf 
bifurcation a t  Ro = -0.0284. Close to the neutral curves of the stationary 
disturbance it is seen that the real part of the eigenfunction is close to that a t  the 
neutral curves whereas the imaginary part is small. Also shown is the variation of w 
along the Hopf-bifurcation branch. 
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FIGURE 10. Curves of constant growth rate a t  Ro = -0,0275: (a) temporal growth; ( b )  spatial 
growth. , Hopf-bifurcation branch. 

3.2. Growing disturbances 
Results concerning disturbances growing either in time or in the streamwise direction 
will be presented in the following. As shown in $2.2 it  is possible to  reduce the 
equations governing both temporally and spatially growing disturbances to a 
coupled system of ordinary differential equations if the disturbance is assumed to 
grow exponentially in time or in the azimuthal direction. For curved channel flow 
without rotation some direct comparisons can be made to the linear stability results 
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of Finlay et al. (1988), whereas for the spatially developing case the present linear 
results can be compared to  their results from a weakly nonlinear analysis. 

Figure 9 ( a )  shows curves of constant growth rate for curved channel flow (i.e. 
Ro = 0 ) ,  which shows that the higher the Re the higher the growth rate. The curves 
obtained are in excellent agreement with those of Finlay et al. (1988) as shown by 
figure 9 (a)  where their results for s = 0.05 are plotted together with our results. The 
spatially growing disturbances are shown in figure 9 (b ) .  Note that the typical growth 
rates obtained are fairly high, e.g. m = 0.1 means a doubling in amplitude every 
seven channel heights. 

The spatially growing disturbance may be compared to the weakly nonlinear 
analysis of Finlay et al. (1988). In  their figure 22 they show how the amplitude of the 
disturbances increases along the channel, where the temporal evolution has been 
transformed to  a spatial development, assuming a propagation velocity equal to the 
mean velocity. For instance, one of their cases was ,9 = 5 and Re = 2.7ReCrit, which 
gave a growth rate of about 0.13 (estimated from their figure 22). A similar value can 
be extrapolated from figure 9(b) .  

For the cases in figure 9 the neutral curves for the stationary disturbances 
determine the unstable region ; however, when the Hopf bifurcation occurs this is not 
so. For instance a t  Ro = -0.0275 (figure 10a) the two loops together with the Hopf- 
bifurcation branch determine the unstable region. It is also interesting to note that 
curves of positive temporal growth rate intersect the neutral curve, and in this case 
the envelope to all curves with positive growth rate gives the unstable region for 
stationary disturbances. At the intersection point in the parameter space the system 
evidently has two eigenvalues corresponding to two different modes, Coriolis and 
centrifugally dominated, respectively. Two such regions are found, one corresponding 
to the lower loop and one to the upper loop. The same type of result is obtained for 
spatially growing disturbances as seen in figure 10(b). 

4. Experimental apparatus and procedure 
The experiments were carried out in a curved water channel mounted on a rotating 

table. The water supply system was stationary and the water was fed through a 
rotating annular coupling to  and from the channel. A throttle valve, mounted after 
the pump, was used for controlling the flow rate, whereas a valve downstream the 
channel outlet regulated the pressure level in the channel. The rotating table was 
driven, via a belt drive, by a stepper motor with a gear box for precise speed control. 
The speed of rotation was determined by measuring the time of a suitable number 
of revolutions of the channel. The maximum speed was about 20 r.p.m. 

Figure 11 shows a sketch of the channel. The curved channel section covered 180' 
and the radius of curvature was 400 mm at the centreline of the channel, giving a 
total channel length of 1250mm. Its width was 10mm and its height 280mm, 
ensuring that the sidewalls had little effect on the flow in the central parts of the 
channel. In terms of channel heights the length is 125. The channel was made of 
Plexiglas. Two 3 mm plates were used for the channel walls. Top and bottom were 
c u t  from a semicircular plate of 10 mm Plexiglas. In order to clean the channel of 
trace particles stuck to the walls, magnetically manoeuvred brushes were installed 
inside the channel. When not in use they were parked at the downstream end of the 
channel. 

The basic laminar flow in a curved channel has to the first order the standard 
parabolic profile and the fully developed state is reached when x/d 2 0.04Re (see e.g. 
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I d =  10mm 

Packed bed 
of 12 mm 
glass beads 

FIQIJRE 11 .  Experimental set-up. 

Schlichting 1979, p. 186). For the low Reynolds numbers used in this study the 
present channel is sufficiently long for the flow to be fully developed over a major 
part of it. At Re = 100 the flow is already fully developed after 4 channel heights 
whereas a t  Re = 1000 it takes 40 channel heights to  reach the fully developed state. 

The stagnation chamber and outlet chamber were also made of Plexiglas. The 
water was fed to the stagnation chamber through a perforated pipe located upstream 
of two turbulence-reducing screens. I n  order to get a high pressure drop and thereby 
an even distribution of the flow, the stagnation chamber upstream of the screens was 
filled with closely packed glass beads (12 mm in diameter). These measures together 
with the contraction (contraction ratio of 23) ensured a low disturbance level at the 
inlet of the channel. To avoid upstream influences of the sharp change in flow 
direction in the outlet chamber the downstream end of the channel was fitted with 
a 10mm Plexiglas piece, which was perforated with 4 m m  holes. With this 
arrangement the flow in the outflow tank gave no visible upstream influence. 

The stationary water supply system consisted of two reservoirs connected through 
a pipe which could be closed by a valve. This enabled the flow rate to be determined 
by measuring the time during which the water level in the container connected to the 
pump decreased a certain amount corresponding to  a known volume. 

The flow was visualized by mixing a small amount (less than 0.1 % by weight) of 
titanium-dioxide coated platelets (10-20 pm in diameter and 3 4  pm in thickness) 
with the water. Such platelets will become oriented by the flow (see e.g. Savas 1985). 
Two 1000 W spotlights illuminated the flow from above a t  a small angle. The photos 
were taken by a 35 mm motor-driven camera mounted on the rotating table. A photo 
was taken by triggering the camera by a mechanical micro-switch. A video camera 
mounted on the rotating table was also used for studying the flow field. 
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FIGURE 12. Curved channel flow without rotation, Re = 960, y = 0.025. 
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FIGURE 14(a-e). For caption Bee facing page. 
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FIGURE 14. Rotating curved channel flow at Re = 360 for varying rotation number. (a) Ro = 0, (b) 
-0.03, (c) 0.03, ( d )  -0.05, (e) 0.05, ( f )  -0.09, (9 )  0.09, (h) -0.11, ( i )  0.11, (j) -0.22, (k) 0.22. 

5. Experimental results 
5.1. Curved channel flow 

The curved channel used in the present experiments had a ratio of width to radius 
of curvature of 0.025. The linear stability theory presented in $ 2  shows that for 
Reynolds numbers below 229.4 no instabilities should occur. An experiment a t  Re = 
190 did not show any sign of an instability. However, above the critical Reynolds 
number several types of instabilities may be observed. Figure 12 shows the flow from 
the convex side of the channel at a Reynolds number of 960. (This figure as well as 
figure 15 are compiled from five photographs taken a t  various positions along the 
channel. There is no perfect match between the photographs, as the photos were 
taken a t  each position for all Ro, whereafter the camera was moved to the next 
position. This means that the exact location of the vortices is not completely 
deterministic, but depends on the initial conditions.) At the inlet side the instability 
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showed up first as a streaky structure typical of the existence of streamwise vortices. 
The higher the Reynolds number the closer to the inlet a clear streaky structure 
appeared. For Re below 700 the streaky structure was observed over the whole length 
of the channel. Above 700 the originally streaky structure became twisted in the 
downstream part of the channel (see figure 12). These twists were travelling 
downstream and interpreted as a secondary instability, of the same type as earlier 
observed in a rotating plane channel flow by Alfredsson & Persson (1989). At 
Re = 960 the twists were first observed a t  about 70 channel heights, i.e. after about 
goo, and travelled downstream with about 80 %I of the bulk velocity. The higher the 
Reynolds number the more upstream the twists first appear. At even higher Re a 
more chaotic motion develops, starting in the downstream part of the channel, which 
moves upstream as the Reynolds number increases. At Re = 1100 the twists extend 
all the way to the outlet ; however, at Re = 1500 the twists appear in the region 40-80 
channel widths from the inlet. Further downstream the flow visualization shows a 
very chaotic picture. At Re = 1850 twists appear very close to the inlet directly 
followed by a highly disturbed flow. Figure 13 is an attempt to describe where the 
different flow regimes occurred when the Reynolds number was varied. The 
boundaries between the different flow regimes are not distinct, but the qualitative 
agreement with a similar figure in Ligrani & Niver (1988) obtained from another type 
of flow visualization is good. 

5.2. Curved channel flow with rotation 

At Re = 360 typical longitudinal vortices occurred over the whole channel a t  Ro = 
0 (figure 14a, note that in figure 14 the flow direction is from right to left. and the 
channel is viewed from the concave side). The typical wavelength observed in the 
figure is 15 mm, but with large individual variations. Detailed observations of the 
flow of particles for this case show that the dark regions correspond to the borders 
of a pair of counter-rotating vortices. This means that the corresponding 
wavenumber is equal to 4.2, which is close to the most unstable wavcnumber 
according to the linear stability analysis. 

A t  Ro = -0.03 the vortices almost completely disappeared as a result of the 
Coriolis force counteracting the centrifugal force. This is in accordance with the 
results from the linear stability analysis (figures 4 and 5) which showed that for the 
present value of the y the flow became stabilized around this value of Ro, e.g. a t  
Ho = -0.0284 the critical Reynolds number is 1245 which should be compared to the 
critical Reynolds number without rotation which is 229. However, the disappearance 
of the vortices occurred only in a small interval of Ro; by Ro = -0.05 the vortices 
had started to reappear (figure 14d) and a t  Ro = -0.09 clear straight streaks were 
again observed (figure 14f). 

At Ro = -0.1 1 (figure 14h) the streaky structure undergoes an undulating motion. 
Some of the streaks seem to merge with their neighbours. However, most streaks are 
fairly long and for this case they can be clearly distinguished and identified a t  least 
over the extent of the photograph. At Ro = -0.22 (figure 14j) the streaks seem to 
become more unstable, sometimes they divide and sometimes they end abruptly. 

When rotating the channel in the other direction the streaks have started to 
undulate by Ro = 0.03 (figure 14c), and the undulation increases with increasing Ro. 
The flow structure a t  Ro = 0.05 (figure 14e)  is similar to that seen for Ro = -0.11 
(figure 14h). This is what might be expected because these two rotation numbers are 
a t  an equal distance from the rotation number corresponding to the maximum 
stability point. A t  higher Ro (figure 14g, i ,  k) the structure of the streaks is similar to 
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that obtained for negative rotation rates, i.e. a t  higher absolute values of Ro the 
instability is rotation dominated. 

Figure 12 showed the flow without rotation a t  a Reynolds number ofRe = 960. For 
this non-rotating casc the vortices appear close to the inlet and the twists a,re seen 
around x/d = 70. Figure 15(a-f)  shows the same Reynolds number but with three 
different rotational speeds in both directions. At Ro = -0.02 (figure 15a) it  is clearly 
shown that the twists have completely disappeared. At Ro = 0.02, the twists are 
instead more pronounced and appear closer to the channel inlet. At Ro = -0.04 the 
twists appear again, now around x/d = 80. For Ro = 0.04 the twists are not 
observed, instead the flow is strongly influenced by a large-scale irregular 
disturbance. At Ro =-0.06 the twists start a t  around x/d = 60 and appear 
throughout the rest of the channel. For Ro = 0.06 the flow is again subjected to large- 
scale disturbances starting at  around x/d = 50. 

6. Discussion 
The present study shows flow visualization of rotating curved channel flow which 

a t  one limit, i.e. without rotation can be compared with the numerical simulation of 
Finlay et al. (1988) and the experiments of Ligrani & Niver (1988). In  the present 
study the same ratio of channel width to curvature ratio as in these earlier studies 
was chosen, namely 1 : 40. The different flow regimes determined by Ligrani & Niver 
compare well with our observations as shown in figure 13. With the present flow 
visualization technique the different flow structures occurring in the flow are easily 
distinguished and it was possible to observe two types of secondary instability a t  
high Re, namely a regular twisting motion and an irregular undulating or wavy 
motion. I n  Taylor-Couette flow, see e.g. Coles (1965), a secondary instability in the 
form of an undulating motion of the basic vortices is observed and is then very 
regular. It is not clear if the observed waves are the same type of disturbance. A 
twisting motion has been observed in the rotating channel flow of Alfredsson & 
Persson (1989) and also in the numerical simulation of the same flow by Yang & Kim 
(1988). In Taylor-Couette flow, Andereck, Liu & Swinney (1986) found an instability 
which they named ‘twisted Taylor vortices ’. This instability resembles the one found 
here. Also, the Taylor vortices a t  the ends of the annular column in a Taylor-Couette 
flow arc sometimes twisted and similar to  the twisted vortices observed here. In the 
numerical simulation of Finlay et al. (1988) two types of secondary instability wcre 
also observed. 

In  some respects the curved rotating channel flow resembles the Taylor-Dean 
problem studied by Hughes & Reid (1964) especially the form of the neutral stability 
curves for stationary disturbances, which in both cases divide themselves into two 
loops. We also find that these loops are interconnected through a Hopf-bifurcation 
branch. The same is true also for the Taylor-Dean problem as shown by Raney & 
Chang (1971). In  the Taylor-Dean problem this behaviour is explained by the 
velocity profile shape, which has two separate regions where centrifugal instability 
may occur, and these instabilities may hence interact. 

The division into two loops gives rise to  a bifurcation type of behaviour when the 
rotation number changes for the present flow configuration, in that the most 
unstable mode switches from one stationary mode to a time-dependent mode and 
then to the other stationary mode as the rotation number is varied. 
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7. Summary 
( i )  The expressions up to first order in y for the mean velocity profile as well as the 

eigenvalue problem determining both temporally and spatially growing disturbances 
are given for rotating curved channel flow. 

(ii) The linear stability analysis of the flow shows that when the centrifugal and 
Coriolis cffccts counteract each other the stability of the flow can be substantially 
enhanced as compared to curved channel flow without rotation. 

(iii) For certain parameter combinations, where the centrifugal and Coriolis effects 
closely cancel, the linear stability analysis shows that three different disturbances 
may be obtained, each of them determining the instability within a certain 
parameter range. The most unstable wavenumber changes stepwise when the most 
unstable disturbance switches from one mode to the next. 

(iv) The experiments show that an almost complete cancellation of the vortices a t  
an Re 50% higher than the critical Re can be obtained close to the most stabilizing 
Ro as determined from the linear stability analysis. 

(v) At higher RP the non-rotating channel shows clear secondary instabilities in 
the downstream part of the channel. If the rotation direction was so that the Coriolis 
effect and the curvature effect counteracted, i t  was possible to completely cancel the 
secondary instability. Also, here the cancellation was most effective at  an Ro close to 
the most stabilizing Ro with respect to the primary linear disturbance. 

Thanks are due to Peter Rogberg who took part during the early stages of this 
work. This work has been financed by STU, the Swedish Board for Technical 
Development, under the program for energy related industrial fluid mechanics. 
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